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On Solving Large-Scale MINLPs

Hassan Hijazi
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Up to $2.3 million in prizes for better power grid optimization!
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Solving a Large-Scale Mixed-Integer Nonlinear Program

Only 97 pages to get the formulation right


https://gocompetition.energy.gov/sites/default/files/Challenge2_Problem_Formulation_20210531.pdf

Solving a Large-Scale Mixed-Integer Nonlinear Program

Only 97 pages to get the formulation right

At an abstract level, this is what we’re dealing with:

min f(x,y)
s.t.

g(z,y) <0,
hz,y) =0,
xeR" yezZ™
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Solving a Large-Scale Mixed-Integer Nonlinear Program

Only 97 pages to get the formulation right

At an abstract level, this is what we’re dealing with:

min f(z,y)

Many many non-convex st
constraints! T

h(x,y) =0, Many many discrete and

continuous variables!
n m™m
veRYyeZ”


https://gocompetition.energy.gov/sites/default/files/Challenge2_Problem_Formulation_20210531.pdf

How Many is Many Many?

Largest instance has 1,224,080,000 variables and 837,488,000 constraints.



https://gocompetition.energy.gov/challenges/23/datasets

How Many is Many Many?

Largest instance has 1,224,080,000 variables and 837,488,000 constraints.

This Being Said

Only a subset of these variables and constraints matter

Due to the flexibility of contingency constraints and the large cost of basecase objective


https://gocompetition.energy.gov/challenges/23/datasets

How Many is Many Many?

Largest instance has 1,224,080,000 variables and 837,488,000 constraints.

This Being Said

Only a subset of these variables and constraints matter

Due to the flexibility of contingency constraints and the large cost of basecase objective

Largest instance has 612,040 important variables and 418,744 important constraints.
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How Many is Many Many?

Largest instance has 612,040 important variables and 418,744 important constraints.

Only a subset of these variables are
free, the rest fall under “auxiliary”
variables

Only a subset of these Constraints will
be active, the rest fall under “redundant”
constraints
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How Many is Many Many?

Largest instance has 612,040 important variables and 418,744 important constraints.

Only a subset of these variables are
free, the rest fall under “auxiliary”
variables

Only a subset of these Constraints will
be active, the rest fall under “redundant”
constraints

Variable Projection

Lazy Constraint Generation

Down to ~50,000 variables and constraints
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https://gocompetition.energy.gov/challenges/23/datasets

Discretely Dealing With Discreteness

Iterative Batch Rounding
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Discretely Dealing With Discreteness

Iterative Batch Rounding

Inspired by MINLP heuristics such as Feasibility Pump[1] and Fix-and-Relax [2]

[1] M. Fischetti, F. Glover, and A. Lodi, “The feasibility pump,”
Mathematical Programming, vol. 104, no. 1, pp. 91-104, 2005

[2] G. Belvaux and L. A. Wolsey, “bc—prod: A specialized branch-and-cut 12
system for lot-sizing problems,” Management Science, vol. 46, no. 5, pp. 724—738, 2000



Discretely Dealing With Discreteness

Iterative Batch Rounding

Inspired by MINLP heuristics such as Feasibility Pump[1] and Fix-and-Relax [2]

Algorithm 1 Iterative Batch Rounding (IBR)

1: Group discrete variables into predefined batches B; to B,,.
2: Solve continuous relaxation of MINLP (1).
: forie{1,...,n} do

w

4: Call the custom ROUND function on batch B;

5: Fix all rounded variables in batch B;

6: Solve the continuous relaxation of reduced
MINLP (1).

7: end for

[1] M. Fischetti, F. Glover, and A. Lodi, “The feasibility pump,”
Mathematical Programming, vol. 104, no. 1, pp. 91-104, 2005

[2] G. Belvaux and L. A. Wolsey, “bc—prod: A specialized branch-and-cut 13
system for lot-sizing problems,” Management Science, vol. 46, no. 5, pp. 724—738, 2000



Discretely Dealing With Discreteness

Iterative Batch Rounding

Algorithm 1 Iterative Batch Rounding (IBR)
1: Group discrete variables into predefined batches B; to B,,.

2: Solve continuous relaxation of MINLP (1).
: forie{l,...,n} do

w

4: Call the custom ROUND function on batch B;

5: Fix all rounded variables in batch B;

6: Solve the continuous relaxation of reduced
MINLP (1).

7: end for

Two observations:

—

Different batch orderings can (dramatically) impact solution quality
2. Different rounding techniques can (dramatically) impact solution quality

14



Rounding Binaries in Piecewise Linear Functions
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Orthogonal
Projection

Fixed-Coordinate
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Dealing With Numerical Convergence

One solver to rule them all:
IPOPT[3]

[1]A. Waechter and L. T. Biegler, “On the implementation of a primal-dual interior point filter line search 18
algorithm for large-scale nonlinear programming,” Math. Programming, vol. 106, no. 1, pp. 25-57, 2006.



Dealing With Numerical Convergence

One solver to rule them all:
IPOPT[3]

IPOPT can be picky, preferring some formulations to others

[1]A. Waechter and L. T. Biegler, “On the implementation of a primal-dual interior point filter line search 19
algorithm for large-scale nonlinear programming,” Math. Programming, vol. 106, no. 1, pp. 25-57, 2006.



Dealing With Numerical Convergence

One solver to rule them all:
IPOPT[3]

IPOPT can be picky, preferring some formulations to others

IPOPT can be moody, disliking some starting points and variable bounds

[1]A. Waechter and L. T. Biegler, “On the implementation of a primal-dual interior point filter line search 20
algorithm for large-scale nonlinear programming,” Math. Programming, vol. 106, no. 1, pp. 25-57, 2006.



Dealing With Numerical Convergence

«  Projection of auxiliary variables Pg; Dj, qj, and t;

A good tradeoff between Jacobian/Hessian sparsity and number of equations

21



Dealing With Numerical Convergence

«  Projection of auxiliary variables Pg; Dj, 4j, and t;

A good tradeoff between Jacobian/Hessian sparsity and number of equations

« Dealing with non-differentiability \/(p8)2 +(2)° + e < Fevi +se +e
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Dealing With Numerical Convergence

«  Projection of auxiliary variables Pg; Dj, 4j, and t;

A good tradeoff between Jacobian/Hessian sparsity and number of equations

« Dealing with non-differentiability \/(p8)2 +(2)° + e < Fevi +se +e

A good starting point and good bounds min (0, gy) < gy < max (0,g,)
—1.5r, <p? < 1.57,
— 1.5r, < p? < 1.57,
—1.57p < p? < 1.5ry
—1L.5ry < pfc < L.57y
—2r <6, <21
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Work In Progress

057

» Projection of all auxiliary variables ) P ‘\\\\
» Building Convex Restrictions f \‘i:\\ \\l
+ Building Convex Relaxations
* Lazy Constraint Generation for Contingencies : ’
é,‘\“ ,// ".

Active P();\'er Injection at Bus 8 (p.u.)
From “Convex Restriction of Power Flow Feasible Sets”

by Lee et al.

Lee, Dongchan, et al. "Convex restriction of power flow feasibility sets." IEEE Transactions on Control of Network 24
Systems 6.3 (2019): 1235-1245.


https://arxiv.org/pdf/1803.00818.pdf

Things that Really Helped

Starting modeling early-on (worked hard for Trial 1)
Using a fast modeling language with symbolic differentiation and disjunctive

constraint support (Gravity)
Testing, testing and testing (a total of 2650 submissions to the sandbox)

25


https://www.gravityopt.com/
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